496,072 research outputs found

    Structural imaging biomarkers of sudden unexpected death in epilepsy.

    Get PDF
    Sudden unexpected death in epilepsy is a major cause of premature death in people with epilepsy. We aimed to assess whether structural changes potentially attributable to sudden death pathogenesis were present on magnetic resonance imaging in people who subsequently died of sudden unexpected death in epilepsy. In a retrospective, voxel-based analysis of T1 volume scans, we compared grey matter volumes in 12 cases of sudden unexpected death in epilepsy (two definite, 10 probable; eight males), acquired 2 years [median, interquartile range (IQR) 2.8] before death [median (IQR) age at scanning 33.5 (22) years], with 34 people at high risk [age 30.5 (12); 19 males], 19 at low risk [age 30 (7.5); 12 males] of sudden death, and 15 healthy controls [age 37 (16); seven males]. At-risk subjects were defined based on risk factors of sudden unexpected death in epilepsy identified in a recent combined risk factor analysis. We identified increased grey matter volume in the right anterior hippocampus/amygdala and parahippocampus in sudden death cases and people at high risk, when compared to those at low risk and controls. Compared to controls, posterior thalamic grey matter volume, an area mediating oxygen regulation, was reduced in cases of sudden unexpected death in epilepsy and subjects at high risk. The extent of reduction correlated with disease duration in all subjects with epilepsy. Increased amygdalo-hippocampal grey matter volume with right-sided changes is consistent with histo-pathological findings reported in sudden infant death syndrome. We speculate that the right-sided predominance reflects asymmetric central influences on autonomic outflow, contributing to cardiac arrhythmia. Pulvinar damage may impair hypoxia regulation. The imaging findings in sudden unexpected death in epilepsy and people at high risk may be useful as a biomarker for risk-stratification in future studies

    Sudden death and sudden birth of entanglement in common structured reservoirs

    Get PDF
    We study the exact entanglement dynamics of two qubits in a common structured reservoir. We demonstrate that, for certain classes of entangled states, entanglement sudden death occurs, while for certain initially factorized states, entanglement sudden birth takes place. The backaction of the non-Markovian reservoir is responsible for revivals of entanglement after sudden death has occurred, and also for periods of disentanglement following entanglement sudden birth.Comment: 4 pages, 2 figure

    Sudden death of effective entanglement

    Full text link
    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyse the effective entanglement, i.e. entanglement minimized over the output data. We show that in the well defined system of two quantum dots monitored by single electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may be applied to other analogous scenarios, such as etimation of the parameters arising from quantum process tomography.Comment: final version, 5 pages, 3 figure

    Sudden Cardiac Death in Athletes - What Can be Done?

    Get PDF
    Sudden death in athletes is a rare event but brings with it an impact that goes beyond sport. There are many causes of sudden death during exercise. While the responsibility of preventing or treating them lays with us physicians, preparticipation screening is largely ineffective and impractical. Definitive, large scale prospective research is required in order to design the most cost-effective system for screening of athletes. In the meanwhile rapid access to defibrillators by trained personnel remains the best possible approach to abort sudden death

    Is composite noise necessary for sudden death of entanglement?

    Get PDF
    The finite time disentanglement or entanglement sudden death, when only one part of the composite system is subjected to a single noise, is examined. While it is shown that entanglement sudden death can occur when a part of the entangled mixed state is subjected to either amplitude noise or phase noise, local action of either of them does not cause entanglement sudden death in pure entangled states. In contrast, depolarizing noise is shown to have an abilitiy to cause sudden death of entanglement even in pure entangled states, when only one part of the state is exposed to it. The result is illustrated through the action of different noisy environments individually on a single qubit of the so-called X class of states and an arbitrary two-qubit pure state.Comment: 6 pages, 4 figures; Version 3: Accepted for publication in the Results in Physics: Comments welcom

    Entanglement sudden death and sudden birth in two uncoupled spins

    Full text link
    We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory
    corecore